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ABSTRACT 

In this paper we study the set of double normals of a solid convex body in E n 

(e.g. n-simplex). There are at least n double normals. The lengths form a set of 
measure zero in R for n < 3, not necessarily so for n > 3. 

1. The problem. A bounded compact convex set B with at least one interior 
point in euclidean n-dimensional vector space E = E n will be called a convex body. 

Its boundary is denoted by dB. A chord is a line segment [p, q] with end points 

p,q e dB. I t  is called a double normal in case, in terms of  inner products of  
vectors in E ,  

( x - p ) ( q - p ) ~ O  and (x - q) (p - q) __> O for a l l x e B .  

1. What can be said about the set of double normals of a convex body? 
In particular: 

2. Must a convex body in E n admit at least n double normals?(2) 

2. Examples. The polar coordinate values of  a vector v ~ E are by definition 
r = ~/~- and co = v/r. The unit vector co is a point of  the unit sphere S "-1 c E. 

The antipodal equivalence class z = n(co) = ( c o , -  co} of the unit vector co is a 
point of  the real projective (n -1) - space  p , - 1 ,  of  which the unit sphere S "-1 is 
covering space under the double covering n :S"-1  . _ ) p , - t .  

I f  co is a unit vector in the direction of a double normal [p,q] of  B, 

co=(q-P)/[q-Pl then so is -co=(P-q)/[P-ql. The set of  such unit 
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vectors is therefore invariant under the antipodal map and it defines the unique 
set of double normal directions K(B)c  F -1 which it covers. 

THEOREM 1. I f  f :Pn - t -~  R is any real C2.function ( =  with continuous se- 
cond derivatives), then there exists a symmetric convex body B in E" with centre 
O, for which the set of double normal directions is 

K(B) = K( f )  c P"- t ,  

where K( f )  is the critical set 

r ( f )  = {z I z ~ e " -  t, (df)z = 0). 

Proof. For t > O, t sufficiently small, the point set defined in terms of polar 
coordinates (r, co) by 

r = 1 + t f@@)) 

is a hypersurface OB,, boundary of a body B t in E .  For t converging to zero 
this hypersurface converges to the unit sphere S"- t ,  and the continuous first and 
second derivatives are included in this convergence. By compactness of P" - t  
it follows that a > 0 exists such that the hypersurface aB, has at each point all 
normal curvatures positive, as has s " - t ,  and is therefore strictly convex. Be- 
cause B, is symmetric with respect to 0 and strictly convex, every chord that 
connects two tangent points on parallel tangent hyperplanes, passes through 0. 
All double normal directions are then found from the equation 

(1) dr = d[1 + ,f(Tr(¢o))] = 0,  or d f  = O. 

Consequently K(B, )=  K ( f )  and the theorem is proved. 

THE CONDITION C2-. A function f : R"--, R will be called C 2- in case it is 
C a (continuous first derivatives) and for any Xo in the domain there exist 6 and 

N such that 

(2) I f ( x  + h) - f ( x )  - (dfL(h)[ < N.  I hl 2 
for all x with [x - xo I < 6 and h < 6. (df)x is the derivative of f at x .  It sends 
the vector h into (df)~(h). If  a function f on a C°-m-manifold (like P=) has 
for any C°°-chart I<: U--, R m a composition f x  -1 which is C 2-, then f is called 
C 2-"  

With these definitions we may replace in Theorem 1 C2-function f by C 2-- 
function f ,  with the same conclusions. 

A special example is obtained as follows. If  xt, . . . ,x ,  are orthonormal coor- 
n -X 2 dinates for E" and g = ~7=xJ i ,  then the restriction of g to S "-1 has 2n 

critical points and it is invariant under the antipodal map. The well defined func- 
tion f = f ro - :  : P~- 1 __, R, which is the composition of the relations 7c- 1 and f,  

has exactly n critical points, Yx,'",Yn. 
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For  any n given distinct points z 1, ..., z. on P " - t  there exists a C~°-diffeomor - 
phism x carrying these points onto the n points Yl, "",Y. respectively. But then 
f z :  P " - I - ~  R is a function with z~, ..., z, as critical points. With Theorem 1 we 
obtain for the corresponding convex bodies: 

COROLLARY. Given n arbitrary distinct straight lines through 0 ~ E" (n >_ 2), 
for example for n = 3 all in one 2-plane, there exists a convex body B with 
exactly n double normals, and such that these are on the n given lines. 

REMARK. If  all double normal directions are close to each other, then the 
boundary of the body lies between two concentric spheres with radii-ratio close 

to one. 

. '~ra 2 EXERCISE. Consider also the geometry of the case defined by g = Lj=~Xj 
with m < n. 

3. A converse to theorem 1. 

TrmOREM 2. Given a convex body B in E", there exists a centrally sym- 
metric convex body B' with C2--boundary ~B', and there exists a C2--function 
f:  W - I  _, R such that 

K(B) = K(B')  = K Or). 

Proof. For  any sets B and C in a vectorspace, let 

- B  = { x ] - x ~ B }  and B + C =  {x + ylx B,y c}. 

Consider a convex body B in E". Take any hyperplane in E" and call all parallel 
hyperplanes "horizontal" .  Define the symmetric convex body B" by B" = B + ( - B )  
The tangent hyperplanes at u s OB" and - u  are parallel. I f  and only if these 
hyperplanes are horizontal, then there exist p and q in OB with u = 2 ( p - q ) ,  at 
which the tangent planes are horizontal. The corresponding chords in B and B" 
are double normal if and only if p - q is vertical. Consequently a vector has the 
direction of  a double normal of  B if and only if it has the direction of  a double 
normal of B", and K ( B ) =  K(B"). Observe that the length of a double normal 
of B" is twice the length of a corresponding double normal of B.  

Let B' be the set of all points of E that have a distance smaller or equal to one 
to the convex body B". B' is a symmetric convex body, whose boundary OB' 
is "parallel" to OB". Clearly K(B')  = K(B"). The length of a double normal of B' 
is 2 more than the length of the corresponding double normal of B% 

Now if z E OB', than there exists y ~ OB" such that z - y has length 1. OB' has 

no point in common with the open ball with radius 1 and centre y .  B' also con- 

tains no point at the other side from T(z),  the hyperplane through z ortho- 

gonal to z - y .  Then we conclude that T(z) is the uniquely defined tangent hyper- 
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plane of ,~B' at z.  The surface ~B' is differentiable at every point, and it is the 
boundary of a convex body. Then it follows (see Bonnesen-Fenchel, Theorie der 
konvexen Ktirper, p. 26)that  ~B' is a Cl-hypersurface. Equivalently the unit 
normal vector at z s 8B' is a continuous function of z. I f  ~B' is given in polar- 
coordinates by r = r(c0)= r(-co) then the function f:pn-l_~ R required in 
theorem 2 is defined by r(co) =f(n(co)). f is clearly a Cl-function. 

Moreover 

K( f )  = K(B') = K(B") = K(B) 

For each point z e 8B' it follows from the fact that some neighborhood of z in 
OB' is pinched between a hyperplane and a sphere both tangent to aB' at z,  that 
the condition for C2- (see (2)) is fulfilled for f .  This proves theorem 2. In the 
next section we study K( f )  and obtain conclusions which, applied to K(B), give 
among others the affirmative answer to the problem in the introduction. 

4. Critical points of a continuous (or C 1) function on a closed topological (or 
C~) manifold. Let M be a closed (compact and without boundary) n-manifold 
and f : M - ~ R  a C o (continuous) or Cl-function. A point z ~ M  is called non- 
critical if there exists a C o or C 1 (resp.) coordinate system ~: U(z) ~ R n covering 
some neighborhood U(z) of z, such that the last coordinate is the restriction of 
f to U(z). A point is called critical if it is not noncritical. Let K(J)  be the set 
of all critical points of f. K( f )  is a closed set in M,  because its complement is 
open. In the Cl-case the critical points z are those for which (d J)= = 0. 

DEFI~TION. The relative Lyusternik-Schnirelmann (L.S.-)category) ~(A, M) of 
a closed subset A in M, is the minimal number of open contractible (in M) sets 
of M that can cover A. The absolute L.S.-category of M is ~,(M) = T(M,M). 

THEOREM 3. Let F be a component of the set of critical points in a level set 
of the C o- or Cl-function f on the compact closed manifold M.~F is a component 
of K ( f ) N  { z l f ( z ) = c }  for some c. Then 

E r r ( F , M )  > 7(M), 

where the summation extends over all components of each critical set in each 

level set. 
As ~(M) is finite, the conclusion is valid in case the summation extends over an 

infinite number of non-zero terms. Hence we may exclude this and assume that 
there are only a finite number of critical levels, and that each level set has a finite 

number of components. 

LEMMA. Let c be the only critical value o f f  in the half open interval 
(b,e] ¢-R. Suppose fb = {zlf(z) <=b) is covered by p contractible (in M) open 
sets V~, ..., Vp with union V, and suppose the critical set at level c is covered 
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by q contractible in (M) open sets Vp+D...,Vp+q with union V ' .  Then 

f~ = (z If(z) =< e} can be covered by p + q contractible open sets. 

Proof of the theorem from the lemma. Applying the lemma inductively, while 
starting from a value smaller than the minimal value of f as first example of b, 
we can go up to any value smaller than the maximum m of f .  But the maximal 
value critical set is covered by a given minimal number of open contractible 
sets, which cover M - f m-2~  for some e > 0 .  After going up to the value m - e 
we can just add these open sets to cover M completely. This implies Theorem 3. 

Proof of the lemma. (Compare Kuiper [4]). I f  b is a critical value, and the 
compact set fb is covered by some open sets, then these sets also cover fb ~ for 
some e > 0. Hence we can replace b by b + e and we then can assume that b 
is not a critical value. This we will do now. 

For every non-critical point z ~ M and neighbourhood V~ there exists a homeo- 
morphism h~ of M and a neighborhood U~ of z,  with U~ c / . ~  c V~, such that 

f(h~(u)) > f (u )  for u E M 

h~(u) = u for u ~ V~ 

f(h~(u)) > f (u )  for u ~ U~ 

With the local coordinate system in which the last coordinate is f ,  this can be 
seen from the following model for such a homeomorphism in coordinate space 
R" with coordinates x l , ' " ,x , ,  at the point 0 and f =  x, .  Let : R ~  R be a 
C°°-function for which 

= 1 1 

O=<¢(s)__<l for s e R .  

¢ ( s )  = 0 

Consider the Coo-map ho given by 

for I s ] > 2 .  

ho(x l , . . . , x , )  = x l , . . . , x n _ l , x ~ + t  x . 

For ). large the support of this map is in a small ball about 0 as centre. For 
t small enough h is a diffeomorphism, and it lifts any point at most to a xn-level 
which is t higher. 

Any compact set W = M - K ( f )  can be covered by a finite number of neigh- 
bourhoods U~, each obtained as above with some non-critical point z, neigh- 
bourhood V, and homeomorphism h,.  Let h be the product of these homeo- 
morphisms in some arbitrary order. By a suitable choice (small) of the para- 
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meter t in each homeomorphism h:, it can be attained that 0 <f(h(u)) - f ( u )  < t~ 
for some arbitrarily given t5 > 0 and every u e M .  Finally let: 

(3) 2e = inf,~ w [f(h(u)) - f ( u ) ]  > 0. 

We consider two examples for W to be called W and W~ (See figure). W is the 
set W = f , - - i n t f b - - V ' ,  with the corresponding homeomorphism h, and 

= 8 (h). The choice is made such that 8 < 6 < ½(c- b), so that 

(4) h(fb) c fc_, 

The other example depends on s and is as follows: 

W 1 = (;re - int f~+,) + (f~_, - int fb). 

,.. 
"/// Y/Ill, 

W 

C +~ 

C 

C -5  

b 

V/// 
Y/J 

Wl 

The corresponding homeomorphism is hi, and 2el = 2e(hl) = inf,~w ( f (h l (u) ) -  
- f (u ) ) .  For every z e M we have 

f(h(z)) > f(z) and f(hl(z)) >=f(z) 

If  z e f t - , ,  then h~ 1 (z) e f t _ , .  Suppose moreover h~ 1 z ~fb, then 

f(h~lz) < f(z) - 2el. 

Consequently one finds that 

h~ TM (f~_,) Cfb ~ integer and 2~ el > c -  b 

Or, as V~fb ,  

(5) h~(V) D h~ (fb) D f c - ,  for 2~tel > c -- b 

Analogously 

(6) h~(f~+~)Dfe for 213ei > e - c  

If  hz e f t+ , - f~_ ,  then z e f t + , - - f b  by (4). I f  moreover hz¢ hV', that is z ~ V', 
then f ( h z ) - f ( z ) ~  2e hence zefc- , .  Consequently for any point hzef¢+,: 
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either 

o r  

o r  

This implies 

(7) 
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hzef~_,,  then zef~_,; 

hz ehV ' ,  then z~ V'; 

hzefc+~ -f~_~ and hz~hV '  - then zef~_~. 

h(fc- ,  U V') Df¢+, 
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From (5), (6) and (7) follows: 

fe c hPt(fc+,)c h~h(f¢_~ U V ' ) c  h~h(h~V UV') 

and fe is covered by the p + q contractible open sets 

h~hh~(V~) for i = 1, . . . ,p 

and h~hh(Vj') for j = 1,-.-, q q.e.d. 

If  M is the real projective n - 1-space/~- 1, then it is known that y(M) = y(P"- 1) = n 
and so for a function f : P " - l ~  R we have: 

COROLLARY 

y(F ,P" - ' )  >_- n. 
F 

In particular if y(F,P ~-~) = 1 for each F, for example if each F is one point, 
then the total number of these components is greater or equal to n. 

5. Application to the double normals problem. Combining the results of  section 
4 with those of  section 3 we get: 

THEOREM 4. A convex body B in E" has at least n double normals. I f  
K ( B ) c  p , - i  consists of a finite number of components F each belonging to a 
set of double normals of constant length, then 

(8) ]~ ?(F, pn- , )  >= n 
F 

For example if B is an ellipsoid in E 3 with two equal axes, then K(B) ~ p2 con- 
sists of  a point and a projective line and the left hand side in (8) is 1 + 2 which 
is >_3. 

PROBLEM. Let O be the family of all convex symmetric bodies B in euclidean 
3-space E 3, that have all double normals in a plane. Is there an upper bound 
to the ratio between the largest and smallest width of  B for B in O? How much 
is it? The ratio is 

max g(to) 
min g(to) 

in case r < g(to) defines B in polar coordinates r and to. 
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6. On the length of  the double normals of  a convex body. 

THEOREM 5. For n > 4 there exists a convex body in E of non-constant 
width, such that every width (a real value) is attained as the length of some 
double normal. The body can be chosen such that there is an arc in p~-i 
consisting of directions of double normals connecting a minimal width double 
normal direction to a maximal width double normal direction. 

Proof. Whitney [7] has given examples of C n- 2-functions f on the n -  1-cube 
i n- 1 < Rn- t with values in I = {t [ 0 < t < 1}, such that d f  is zero at each point 

of an (non rectifiable) arc connecting two points with different f-values. This 
function can be carried over to P~-1 by imbedding I ~- i in P~-1 and extending 
the function suitably (Whitney [8])(3). The construction of section 2 then gives 

the convex body required in the theorem. 

PROBLEM. In Theorem 4 it remains open whether the set of all double normal 
directions (not decomposed in constant length parts) obeys an analogous relation 

If  F represents a component of this set, is then again ~ r y ( F , P  "-1) > n? A 
special problem in the same direction is: 

Is there on the two-sphere a C1-function f such that the set {x I (d f )  x = 0} 
is an arc? 

For  n = 3 we get a conclusion different from that in Theorem 5: 

TrIEOREM 6. The lengths of the double normals of a convex body B in E 3 

form a set of measure zero in R. 

Proof. This mainly consists in an application of the theorem of  A. P. Morse 
and Sard. As in section 3 we replace B by B" and then by B', and we denote the 

latter again by B.  
Let this symmetric body B be defined by the inequality in polar coordinates 

r < f(og). Some neighbourhood of  any boundary point z e ~B in ~B is pinched 

(3) By a suitable modification of the example of Whitney [7l (see also Besicovith-Schoenberg 

[I]) one can obtain for 0 > 0 a real C1 function f on 12 = {(xl,x2)~ I1210 < xl  < 1, 

0 ~ x  2 < 1} such that the set of critical values 

f(K) = f({x l(df)  = o}) 

is the interval I = {t I 0 < t < 1} but for which f is a function rather close to being C 2 in 

the following sense. There is a closed set J (in the examples it is an arc) and for x ~ J, y ~ 12 one 

has, writing r = ~/(y--x) 2 , A f  = f ( y )  - f ( x ) ,  that 

Af  is bounded (6 > 0) 
r2(lnr) 2+~ 

and f is C ~ outside J. 
PROBLEM. Does there exist an example 0 = 0? 
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between a unit ball and the tangent plane, mutually tangent at z ,  as we observed 
in section 3. Let n(to) be the unit outside normal vector at the point (r, to )=  
()(co), to) of ~3B. From the assumptions about B it follows geometrically that 

In(to1) -- n(to2)[ 

Itol-to21 
is bounded. The function n:S2  ~ $2 which assigns to to the value n(co) is then 

totally differentiable almost everywhere by a theorem of Rademacher (see Saks 
[-9]). By a theorem of Federer (see Whitney [-8]) for any e > 0 there exists then a 
"b ig"  closed set Q c S 2 such that S 2 - Q has measure < e, and such that n(to) 

is a Cl-function on Q. 
Geometrically one finds: 

dl-f(co).to] = f ( t o ) . ( n d t o ) t o + o r t h o g o n a l  component. The left hand side is: 

f dco + (d f)to 
The inner product with to yields, with to2 = 1 and dto 2 = 2todto = 0 ,  

d f =f(co)(ndto) 

The coefficient f(to),  n(co) of dto is C 1 for to ~ Q. 
Hence f is C z for to e Q c S  2, and it can be extended to a C2-function 

g: S 2 ~ S 2 with 

g(to) =f ( to)  for to ~ Q. 

By the theorem of A. P. Morse-Sard [6, 10] the critical values of g form a set 
of measure zero. The critical points of f in Q therefore give a contribution zero 
to the measure of the set of critical values o f f .  

On the other hand the critical points o f f  outside Q have (Hausdorff-)measure 
< 5. Hence they can be covered by circular small discs with critical points as 
centres and with the sum of the areas smaller than 2e. 

Any such disc of small radius 6 in dB is again pinched between a tangent 
plane and a ball with radius one (section 3), and it contributes at most 
2 ( 1 - c o s 6 )  < 262 to the set of values of widths of the body. The sum of  
these contributions is then smaller than 2/re times the sum of the areas of the 
discs m, hence < e. This being true for any 5, the theorem follows. 
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